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Abstract. By means of improved empirical fits to the differential cross section data on pp elastic scatter-
ing at 19.4 ≤

√
s ≤ 62.5 GeV and making use of a semi-analytical method, we determine the eikonal in the

momentum transfer space (the inverse scattering problem). This method allows for the propagation of the
uncertainties from the fit parameters up to the extracted eikonal, providing statistical evidence that the
imaginary part of the eikonal (real part of the opacity function) presents a zero (change of signal) in the
momentum space, at q2 ≈ 7±1 GeV2. We discuss the implication of this change of signal in the phenomeno-
logical context, showing that eikonal models with one zero provide good descriptions of the differential cross
sections in the full momentum transfer range, but that is not the case for models without zero. Empirical
connections between the extracted eikonal and results from a recent global analysis on the proton elec-
tric form factor are also discussed, in particular the Wu–Yang conjecture. In addition, we present a critical
review on the pp differential cross section data presently available at high energies.

PACS. 13.85.Dz; 13.85.-t

1 Introduction

Quantum chromodynamics (QCD) is very successful in de-
scribing hadronic scattering involving very large momen-
tum transfers [1]. However, that is not the case for soft
diffractive processes (large distance phenomena), in par-
ticular the simplest process: high-energy elastic hadron
scattering. The point is that perturbative techniques can-
not be applied, and presently non-perturbative approaches
cannot describe scattering states without strong model as-
sumptions [2, 3]. At this stage phenomenology is an im-
portant approach and among the wide variety of models,
the eikonal picture plays a central role due to its connection
with unitarity [2].
Alongside phenomenological models, empirical ana-

lyses, aimed to extract model-independent information
from the experimental data (the inverse scattering prob-
lem), also constitute an important strategy that can con-
tribute with the establishment of novel theoretical calcu-
lational schemes. In an unitarized context this approach
is characterized by the model-independent extraction of
the eikonal from empirical fits to the differential cross sec-
tion data, mainly on proton–proton (pp) and antiproton–
proton (p̄p) scattering (highest energies reached in accel-
erator experiments). However, one of the main problems
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with this kind of analysis is the very limited interval of the
momentum transfer with available data, in general below
6GeV2. This means that, from the statistical point of view,
all the extrapolated curves from the fits must be taken
into account, which introduces large uncertainties in the
extracted information.
In [4, 5] this problem was addressed through a detailed

analysis of the experimental data in the region of large mo-
mentum transfer, and that allowed the extraction to be
made of the eikonal on statistical grounds. The main result,
from the analysis of pp elastic scattering at 19.4≤

√
s ≤

62.5GeV, concerned the evidence of eikonal zeros (change
of sign) in the momentum transfer space and that the pos-
ition of the zero decreases as the energy increases [4]. As
discussed in that paper, this kind of model-independent
information in the momentum space is very important in
the construction and selection of phenomenological ap-
proaches,mainly in the case of diffraction models, since the
eikonal, in the momentum transfer space, is expected to be
connected with hadronic form factors and elementary cross
sections.
In this work, we introduce two main improvements in

this previous analysis, which are related with the ensemble
of the selected data and the structure of the parametriza-
tion. We still obtain statistical evidence for the zeros, but
different from [4], it cannot be inferred that the position
of the zero decreases as the energy increases (some pre-
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liminary results on this feature appear in [6]). In order to
explain some subtleties involved in the analysis, we present
a novel critical review and discussions on the pp differential
cross section data presently available. That may be very
opportune, since presently a great development is expected
of the area with the next pp experiments at 200GeV (BNL
RHIC) [7] and 14 TeV (CERN LHC) [8]. In addition, we
discuss in some detail the implication of the eikonal zero in
the phenomenological context, introducing a novel analyti-
cal parametrization for the extracted eikonal. Connections
between the empirical result for the eikonal and recent data
on the proton electric form factor are also presented and
discussed, in particular the Wu–Yang conjecture.
The manuscript is organized as follows. In Sect. 2 we re-

call the main formulas connecting the experimental data
and the eikonal (the inverse scattering problem). In Sect. 3
we present a critical review on the experimental data pres-
ently available from elastic pp scattering. In Sect. 4 we
discuss the improvements introduced in the previous an-
alysis and present the new fit results. In Sect. 5 we treat
the determination of the eikonal in the momentum trans-
fer space, and in Sect. 6 we discuss the implication of the
eikonal zeros in the phenomenological context, as well as
connections between the extracted eikonal, models and the
proton electric form factor. The conclusions and some final
remarks are the contents of Sect. 7.

2 Eikonal representation and the inverse
scattering problem

In the eikonal representation, the elastic scattering ampli-
tude can be expressed by [2]

F (s, q) = i

∫ ∞
0

bdbJ0(qb)
{
1− eiχ(s,b)

}
, (1)

where s is the center-of-mass energy squared, q2 =−t the
four-momentum transfer squared, b the impact parameter
and χ(s, b) the eikonal function in the impact parameter
space (azimuthal symmetry assumed). It is also useful to
define the profile function (the inverse transform of the am-
plitude) in terms of the eikonal:

Γ (s, b) = 1− eiχ(s,b) . (2)

With these definitions the complex eikonal corresponds to
the continuum complex phase shift, in the limit of high
energies and the semi-classical approximation: χ(s, b) =
2δ(s, b); that is also the normalization in the Fraunhofer
regime [2].
In the theoretical context, eikonalmodels are character-

ized by different phenomenological choices for the eikonal
function in the momentum transfer space:

χ̃(s, q) =

∫ ∞
0

bdbJ0(qb)χ(s, b) . (3)

On the other hand, the inverse scattering problem deals
with the empirical determination, or extraction, of the

eikonal from the experimental data on the differential cross
section,

dσ

dq2
= π|F (s, q)|2 , (4)

the total cross section (optical theorem)

σtot(s) = 4πIm F (s, q = 0) , (5)

and the parameter ρ, defined as the ratio of the real to the
imaginary part of the forward amplitude,

ρ(s) =
Re F (s, q = 0)

Im F (s, q = 0)
. (6)

Formally, from a model-independent parametrization
for the scattering amplitude and fits to the differential
cross section data, one can extract the profile function

Γ (s, b) =−i

∫ ∞
0

qdqJ0(qb)F (s, q) , (7)

the eikonal in the impact parameter space,

χ(s, b) =−i ln[1−Γ (s, b)] , (8)

and then, under some conditions , the eikonal in the mo-
mentum transfer space through (3). The possibility to ex-
tract χ̃(s, q) is very important if we look for possible con-
nections with quantum field theory, since elementary (par-
tonic) cross sections are expressed in the momentum trans-
fer space as well as form factors of the nucleons.
However, as already commented on in our introduction,

we stress that a drawback of the above inverse scattering
is the fact that the differential cross section data available
cover only limited regions in terms of the momentum trans-
fer, which in general is small, as referred to and discussed
in what follows. This can be contrasted with the fact that,
in order to extract the eikonal, all the Fourier–Bessel trans-
forms must be performed in the interval 0→∞. Therefore,
data at large values of the momentum transfer play a cen-
tral role in this kind of analysis and for that reason we first
discuss in the next section the experimental data presently
available and some subtleties involved in the selection, nor-
malization and interpretation of the data sets. A detailed
analysis of the data at small q2 is discussed in [9] and ex-
tended in [10].

3 Critical discussion on pp differential cross
section data at high energies

In [4] it has been shown that the lack of sufficient experi-
mental information on p̄p elastic differential cross sections
does not allow one to perform the kind of analysis we are
interested in. For that reason we shall treat here only pp
elastic scattering at the highest energies, namely

√
s above

≈ 19GeV.
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The inputs of our analysis concern the experimental
data on differential cross section, total cross section, the ρ
parameter and the corresponding optical point:

dσ

dq2

∣∣∣∣
q2=0

=
σ2tot(1+ρ

2)

16π
, (9)

where ρ(s) and σtot(s) are the experimental values at each
energy. Since we are interested only in the hadronic inter-
action, the selected differential cross section data cover the
region above the Coulomb–nuclear interference, namely
q2 > 0.01 GeV2. In what follows we discuss the sets of data
at seven different energies, divided in the two groups 23.5≤√
s≤ 62.5GeV (5 sets) and

√
s= 19.4 and 27.4 GeV.

3.1 Data at 23.5≤
√
s≤ 62.5GeV

The five data sets at
√
s= 23.5, 30.7, 44.7, 52.8and 62.5GeV

were obtained at the CERN Intersecting Storage Ring
(ISR) in the seventies and still represent the largest and
highest energy range of available data on pp scatter-
ing (the recent experiment at RHIC by the pp2pp Col-
laboration measured only the slope parameter at

√
s =

200GeV [11]). The data on σtot, ρ and dσ/dq
2 were

compiled and analyzed by Amaldi and Schubert lead-
ing to the most coherent set of data on pp scatter-
ing. Detailed information on this analysis can be found
in [12]; here we only recall some aspects relevant to our
discussion.
Optical points. The numerical values for the total cross

sections correspond to the average of three experiments,
performed in each of the above energies; the ρ data come
from two experiments, one at 23.5GeV and the other in
the region 30.7–62.5GeV. These numerical values are dis-
played in Table 1, together with the corresponding optical
points (and references for the ρ data).
Data beyond the forward direction (q2 > 0.01GeV2).

The data in the region of small momentum transfer were
normalized to the optical point, and above this region dif-
ferent data sets were normalized relative to each other,
taking into account both the statistical and systematic
errors [12]. The final result of this coherent and accurate
analysis of the differential cross sections were published
in the numerical tables of the series Landolt–Börnstein
(LB) [13], from which we extracted our data sets. They

Table 1. Forward data (σtot and ρ) and optical points from pp scattering used in this analysis

√
s σtot ρ dσ/dq2

∣
∣
∣
q2=0

(GeV) (mb) (mbGeV−2)

19.4 38.98±0.04 [14] 0.019±0.016 [15] 77.66±0.02
23.5 38.94±0.17 [12] 0.02±0.05 [16] 77.5±0.7 [12]
30.7 40.14±0.17 [12] 0.042±0.011 [17] 82.5±0.7 [12]
44.7 41.79±0.16 [12] 0.0620±0.011 [17] 89.6±0.7 [12]
52.8 42.67±0.19 [12] 0.078±0.010 [17] 93.6±0.8 [12]
62.5 43.32±0.23 [12] 0.095±0.011 [17] 96.8±1.1 [12]

Fig. 1. Proton–proton differential cross section data at the ISR
energy region from the Landolt–Börnstein tables [13] and op-
tical points from Table 1. Data were multiplied by factors of
10±4

are reproduced in Fig. 1, together with the optical points
(Table 1). As we can see, the largest set with available data
correspond to

√
s= 52.8GeV, with q2max = 9.75GeV

2. Ex-
cept for the data at 44.7GeV all the other sets cover the
region nearly below 6GeV2.

3.2 Data at
√
s= 19.4 and 27.4GeV

These sets correspond to the largest values of the mo-
mentum transfer with the available data, namely q2max =

11.9GeV2 (
√
s = 19.4GeV) and q2max = 14.2GeV

2 (
√
s =

27.4GeV). For that reason they play a fundamental role
in our analysis. In particular, as we shall discuss, data
at 27.4GeV are crucial for the statistical evidence of the
eikonal zero and data at 19.4 GeV are extremely import-
ant for giving information on the energy dependence of the
position of the zero.
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These data were obtained in the seventies–eighties at
the Fermi National Accelerator Laboratory (Fermilab) and
at the CERN Super Proton Synchrotron (SPS). Some of
these data sets were then published or made available from
the authors in a preliminary form. We call attention to this
fact because comparisons and interpretation may occur
that are not consistent with what can be inferred from
the final published results. In this section we first list and
summarize our selection of the experimental data and then
discuss the information that can be extracted from these
ensembles.

3.2.1
√
s= 19.4GeV

Optical point.We evaluate the optical point, (9), with the
values of the total cross section obtained by Carrol et
al. [14] and the ρ parameter by Fajardo et al. [15] (Table 1).
Both experiments were performed at the Fermilab with
beam momentum plab = 200GeV (

√
s= 19.42GeV).

Data beyond the forward direction. We made use of the fol-
lowing data sets.
First, 0.075≤ q2 ≤ 3.25GeV2. Final data published by Ak-
erlof et al. [18] and obtained at the Fermilab with plab =
200GeV. The errors are statistical and the absolute nor-
malization uncertainty is 7%.
Second, 5.0≤ q2 ≤ 11.9GeV2. Final results from Faissler
et al. [19], obtained at the Fermilab with plab = 201GeV
(
√
s= 19.47GeV). The errors are statistical, and the over-

all normalization error is 15%.
Third, 0.6125≤ q2 ≤ 3.90GeV2. Data obtained by Fide-
caro et al. [20], at the CERN-SPS with plab = 200GeV. The
q2 values correspond to the central values of the bins from
[0.600–0.625] to [3.8–4.0]. The data are normalized [20] and
the errors are statistical.
Fourth, 0.95≤ q2 ≤ 8.15GeV2. Final results from Rubin-
stein et al. [21], obtained at Fermilab with plab = 200GeV.
The errors are statistical, and systematic uncertainties in
overall normalization are 15%. The points at q2 = 6.55 and
8.15 GeV2 have a statistical error of 100%.

3.2.2
√
s= 27.4GeV

The data cover the region 5.5 ≤ q2 ≤ 14.2GeV2, and we
have used the final results from Faissler et al. [19], obtained

Table 2. Intervals in the momentum transfer for the differential cross section data at q2 > 0.01 GeV2

(above the Coulomb–nuclear interference region), number of points used in this analysis and refer-
ences for the tables

√
s (GeV) q2 interval (GeV2) Number of points References

19.4 (Fermilab and CERN-SPS) 0.075–11.9 156 [18–21]
23.5 (CERN-ISR) 0.042–5.75 172 [13]
27.4 (Fermilab) 5.5–14.2 39 [19]
30.7 (CERN-ISR) 0.016–5.75 211 [13]
44.7 (CERN-ISR) 0.01026–7.25 246 [13]
52.8 (CERN-ISR) 0.01058–9.75 244 [13]
62.5 (CERN-ISR) 0.01074–6.25 163 [13]

Fig. 2. Differential cross section data at
√
s = 19.4 GeV and

27.4 GeV used in this analysis

at Fermilab with plab= 400GeV (
√
s=27.45GeV). The er-

rors are statistical and the overall normalization error is
15%.
All these data at 19.4 and 27.4GeV are displayed

in Fig. 2 with the statistical errors. The intervals in the mo-
mentum transfer of all data referred to above, 19.4≤

√
s≤

62.5GeV, are summarized in Table 2.

3.3 Discussion of data at large momentum transfers

We now focus the discussion on the experimental data
available in the region of large momentum transfer, which,
as already noted, play a central role in the global informa-
tion that can be extracted from the fit procedure (uncer-
tainty region and error propagation). We first call atten-
tion to some differences appearing in the published data
and then discuss the dependence on the energy of the data
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above q2 = 3–4GeV2 in the region of interest 19–63 GeV
(Figs. 1 and 2). To clarify some points we shall follow
a nearly chronological order.

3.3.1 References and data

As we have seen, the final data from the CERN-ISR
at 23.5 ≤

√
s ≤ 62.5 GeV, compiled and normalized by

Amaldi and Schubert, were published in LB tables in 1980.
Concerning this ensemble it should be noted that final data
from experiments, at large momentum transfer, were pre-
viously published by Nagy et al. in 1979 [23], covering the
region above 0.825GeV2 (

√
s = 23.5, 52.8. 62.5GeV) and

above 0.975GeV2 (
√
s= 30.7, 44.7GeV). The point here is

that although the authors refer to final results, the numer-
ical values appearing in the LB tables are about 3% higher
than those by Nagy et al. This difference may be due to the
normalization process by Amaldi and Schubert, referred to
in Sect. 3.1.
The data at 19.4 and 27.4GeV also appear in the LB

tables and in this case we first note that

(1) these data did not occur in the analysis by Amaldi
and Schubert (only ISR data) being, therefore, not
normalized;

(2) some numerical values appearing in the tables are
preliminary and do not correspond to final pub-
lished results, as discussed in what follows;

(3) other data at 19.4GeV were published after
1980 [20, 21] (Sect. 3.2).

At 19.4GeV, the data appearing in the LB tables in the re-
gion 0.075≤ q2 ≤ 3.25GeV2 are exactly the same as those

Fig. 3. Differential cross section data on pp scattering at
27.4 GeV from the Landolt–Börnstein tables [13] (black circles)
and from Faissler et al. [19] (white circles). The uncertainties
correspond to the statistical errors only

published by Akerlof et al. in 1976 [18]. However, data at
this energy in the region 5.5≤ q2 ≤ 11.9GeV2 and those at
27.4GeV and 5.5≤ q2 ≤ 14.2GeV2 do not correspond to the
final values published by Faissler et al. in 1981 [19]. The dif-
ferences, in the case of the data at 27.4GeV, are illustrated
in Fig. 3, where we see that although the general trend of
both sets are similar, the corrections are different in differ-
ent regions of the momentum transfer (the geometries of
the experiment at mid and high q2 values [19]). Moreover,
the preliminary set appearing in the LB tables has 30 data
points and the final set byFaissler et al. presents 39 data.We
shall return to this point when discussing the improvements
in our previous analysis (Sect. 4.1).

3.3.2 Dependence on the energy

It has been argued that the data on pp scattering at large
momentum transfers (q2 > 3–4 GeV2) and energies above√
s∼ 19 GeV have a small dependence on the energy. That
represents an important aspect because, if this dependence
can be neglected, the information at the largest values of
the momentum transfer (for example, data at 27.4GeV)
can be added to sets at nearby energies leading to a dras-
tic reduction of the uncertainty regions in fit procedures. In
fact, that was the strategy in the previous analysis that al-
lowed the statistical evidence to be inferred for the eikonal
zeros [4, 5]. However, the exact value of the energy and
momentum transfer above which this dependence can be
neglected is not clear in the literature. In what follows, we
first recall some previous results, comparisons and argu-
ments and then present a quantitative test, which allow
one to infer numerical limits or bounds for the indepen-
dence on the energy.
In this respect the main ensemble is obviously the data

at 19.4 and 27.4GeV, published by Faissler et al. in 1981,
since they cover the region up to 11.9 and 14.2GeV2, re-
spectively. One important result of this measurement was
that the data showed no sign of a second dip at large mo-
mentum transfer (this dip was previously suggested by
the ISR data at 52.8GeV and q2 ∼ 8–9 GeV2; see Fig. 1).
Faissler et al. indicate that the ratio of the differential cross
section data at 19.4 and 27.4GeV, for the same q2 and in-
terval analyzed, is about 2.3. This difference can be seen
in Fig. 2, indicating therefore a reasonable energy depen-
dence. The authors also present comparison of the data at
27.4GeV and those at 52.8GeV (ISR). For the ISR data
they quote the paper published by De Kerret et al. in
1977 [22], where no table is available, only a plot of the
data; there is also no reference to the final values pub-
lished by Nagy et al. in 1979 [23]. According to Faissler et
al., comparison of data at 27.4GeV with those preliminary
results at 52.8GeV indicated a ratio of 1.5±0.3, after tak-
ing into account the normalization errors quoted in both
experiments. The authors conclude that the energy depen-
dence is significantly less for

√
s > 27.4GeV than it is for√

s < 27.4GeV, referring to a small energy dependence be-
yond 27.4GeV for 5< q2 < 8 GeV2 [19].
Another aspect discussed by these authors concerns the

value of the slope of the differential cross section at large
momentum transfers. In particular, they show that the
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data at 27.4GeV follow a power fit of the form (q2)−λ

with λ = 8.45± 0.1 and χ2 = 33 for 28 degrees of free-
dom [19]. This result was interpreted as consistent with the
QCD multiple-gluon exchange calculation by Donnachie
and Landshoff, which predicts λ= 8 [24–26].
In order to get some quantitative and detailed infor-

mation on the energy dependence of the data at large mo-
mentum transfer, q2 > 3–4 GeV2, and in the energy region
of interest (19–63 GeV), we have performed several tests
with our selected data (Sects. 3.1 and 3.2), taking into ac-
count only the statistical errors. We consider the following
parametrization:

dσ

dq2
=

K

(q2/Q2)λ
, (10)

with Q2 = 1GeV2, so thatK is given in mbGeV−2.

Table 3. Tests on data at large momentum transfers through the parametrization (10)

q2min (GeV
2)

√
s (GeV) DOF χ2/DOF K (mbGeV−2) λ average χ2/DOF at ISR energies

19.4 82 23.4 0.2140±0.0015 8
23.5 54 1.49 00183±0.0030 8
30.7 54 2.24 00094±0.0027 8
44.7 57 1.69 00123±0.0026 8 1.83±0.30
52.8 62 2.05 00040±0.0017 8
62.5 55 1.69 00130±0.0028 8

3.5
19.4 81 23.6 0.255±0.016 8.087±0.030
23.5 53 1.26 0.219±0.036 8.313±0.086
30.7 53 2.23 0.091±0.011 7.900±0.064
44.7 56 1.72 0008±0.012 7.978±0.060 1.78±0.36
52.8 61 1.98 0.0862±0.0070 7.883±0.048
62.5 54 1.72 0016±0.015 8.012±0.067

19.4 76 23.4 0.2172±0.0018 8
23.5 44 1.73 00184±0.0031 8
30.7 44 1.71 00177±0.0031 8
44.7 47 1.61 00178±0.0030 8 1.74±001
52.8 52 1.92 00117±0.0025 8
62.5 45 1.74 00170±0.0030 8

4.5
19.4 75 22.8 0.390±0.027 8.291±0.034
23.5 43 1.33 0.289±0.062 8.45±001
30.7 43 1.40 0.251±0.050 8.38±000
44.7 46 1.32 0.248±0.048 8.38±000 1.50±0.24
52.8 51 1.90 0046±0.022 8042±0.079
62.5 44 1.53 0.221±0.043 8.320±0.099

19.4 71 22.6 0.2102±0.0018 8
23.5 39 1.84 00183±0.0031 8
30.7 39 1.88 00181±0.0020 8
44.7 42 1.76 00180±0.0031 8 1.75±0.33
52.8 47 2.06 00134±0.0033 8
62.5 40 1.82 00182±0.0031 8

5.5
19.4 70 22.2 0.257±0.022 8.097±0.040
23.5 38 1.40 0.288±0.061 8.45±001
30.7 38 1.46 0.283±0.060 8.44±001
44.7 41 1.38 0.279±0.060 8.43±001 1.58±0.22
52.8 46 1.83 0.234±0.050 8.37±001
62.5 39 1.40 0.288±0.061 8.44±001

The point is to add the data at 27.4GeV to each set
at nearby energies, from 19.4 to 62.5GeV and perform the
fits to each ensemble with the above parametrization. We
have introduced three cutoffs for the momentum transfer,
q2min = 3.5, 4.5 and 5.5 GeV

2 and have considered either
λ= 8 (as predicted by Donnachie and Landshoff [24–26])
or λ as a free fit parameter. The numerical results of these
tests, obtained through the CERN-Minuit code [27], are
displayed in Table 3. Figure 4 illustrates the fits in the case
of the lowest cutoff, q2min = 3.5GeV

2.
These tests indicate the following features concerning

the energy dependence of each set.

1. The data at 19.4GeV are not compatible with the
power law and with data at 27.4GeV since in all the
cases (3 cutoffs) χ2/DOF∼ 20 for ∼ 50 DOF.
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Fig. 4. Addition of the data at 27.4 GeV and fit through para-
metrization (10) in logarithmic scales, with cutoff at q2min =

3.5 GeV2.Curves and data were multiplied by factors of 10±4

2. As expected the best statistical results were obtained
with λ as a free parameter. In this case, their values de-
viate from 8 as the cutoff increases, reaching λ∼ 8.4 for
q2min = 5.5GeV

2 (compatible with the numerical value
presented by Faissler et al.).

3. Each set at the ISR energy region is compatible with
the power law and with data at 27.4GeV (the last col-
umn shows the average χ2/DOF at the ISR region).
Although the data at 23.5GeV cover the region up to
5.75 GeV2 and those at 27.4GeV start at 5.5 GeV2, the
fits indicate global compatibility for cutoffs at 3.5 and
4.5 GeV2. For that reason we may consider the data at
23.5 GeV as a limit point for the beginning of the energy
independence.

These conclusions can be corroborated by performing the
same test with all the ISR data together and then by adding
to this ensemble the data at 27.4GeV. For completeness

Table 4. Fits through parametrization (10) to: (1) all the ISR data (ISR); (2) all the ISR data
together with data at 27.4 GeV (ISR+27.4); (3) data at 19.4 GeV (19.4)

Ensemble DOF χ2/DOF K (mbGeV−2) λ

ISR 90 0.97 0.09635±0.00096 8

89 0.87 0.085±0.013 7.91±0.11
ISR+27.4 129 1.46 0.1012±0.0014 8

128 1.38 0.0798±0.0055 7.847±0.042
19.4 43 10.0 0.2571±0.0021 8

42 11.3 0.258±0.017 8.003±0.032

Fig. 5. Fit to pp differential cross section data from ISR to-
gether with data at 27.4 GeV (ISR+27.4) and q2 > 3.5 GeV2

we also consider the fit to the data at 19.4GeV alone. The
results with a cutoff at 3.5 GeV2 are displayed in Table 4,
where the above ensembles are denoted by ISR, ISR+27.4
and 19.4, respectively. Figure 5 shows the fit result in the
case of the ensemble ISR+27.4 andλ as a free fit parameter.
The main conclusion, for what follows, is that the data

at 27.4GeV can be added to each of the five ISR data
sets, leading to ensembles with improved experimental in-
formation in the region of the large momentum transfers
(q2max = 14.2GeV

2 in all the cases), reducing the uncertain-
ties in the extrapolated fits. That, however, is not the case
for data at 19.4 GeV, for which q2max = 11.9GeV

2.

4 Improvements in the previous analysis
and fit results

Now we first discuss some improvements introduced in the
previous analyses [4, 5], which are based on three aspects:
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the data ensemble (selected data) and fit procedure, the
structure of the parametrization and the confidence inter-
vals for the uncertainties in the fit parameters. After that
we present our new fit results.

4.1 Data ensembles and energy independence

Based on all the information and comments presented
in Sect. 3, we call attention here to two errors appearing
in [4, 5] and discuss the corrections needed. These concern
the selected data at 19.4 and 27.4GeV, as well as the cri-
terion for the energy independence at large momentum
transfer.
First, in [4, 5] the data set at 27.4 GeV was extracted

from the LB tables, and, as we have seen, these 30 data
points do not correspond to the final result with 39 points
published by Faissler et al. (Sect. 3.3.1). Here we make use
of this latter data set.
Secondly, in [4] the data at 19.4GeV cover only the re-

gion up to 8.15GeV2, since the data by Faissler et al. at this
energy (up to 11.9GeV2) were not included in the analy-
sis. Here, as referred to in Sect. 3.2.1 we include all the data
available at this energy.

Table 5. Fit results and statistical information from each data set: values of the free parameters, maximum value of the momen-
tum transfer in GeV2 (q2max), values of the up parameter for each fit (see text), number of degrees of freedom (DOF) and chi square

per degree of freedom (χ2/DOF) obtained in this analysis and that obtained in [4]

√
s (GeV): 19.4 23.5 30.7 44.7 52.8 62.5

α1 0.1364 −0.260 −1.20×10−3 −0.0119 −0.0281 −0.042
±0.0041 ±0.074 ±0.87×10−3 ±0.0024 ±0.0045 ±0.014

α2 −1.655 3.4 3.70 0.631 1.26 2.20
±0.066 ±1.3 ±0.49 ±0.090 ±0.13 ±0.61

α3 3.686 0.25 −0.0441 3.710 3.631 0.20
±0.069 ±0.13 ±0.0063 ±0.053 ±0.060 ±0.28

α4 −1.495 − − −3.096 −3.116 −
±0.042 ±0.050 ±0.056

α5 7.396 −0.0014 4.51 7.425 6.996 6.46
±0.086 ±0.0017 ±0.51 ±0.075 ±0.012 ±0.64

α6 −0.1093 4.6 − −0.39×10−3 −1.06×10−3 −0.0013
±0.0040 ±1.3 ±0.38×10−3 ±0.54×10−3 ±0.0013

β1 0.6002 1.19 0.378 0.736 0.926 0.98
±0.0060 ±0.29 ±0.067 ±0.049 ±0.051 ±0.14

β2 2.762 8.4 8.18 31.6 16.5 11.6
±0.063 ±1.7 ±0.62 ±6.4 ±1.6 ±1.9

β3 2.272 1.31 0.984 2.183 2.217 2.89
±0.017 ±0.54 ±0.079 ±0.014 ±0.015 ±0.94

β4 1.770 − − 2.063 2.126 −
±0.017 ±0.013 ±0.014

β5 5.864 0.39 4.21 6.092 5.646 5.18
±0.077 ±0.11 ±0.12 ±0.086 ±0.086 ±0.25

β6 0.5706 4.24 − 0.292 0.368 0.382
±0.0046 ±0.44 ±0.081 ±0.048 ±0.092

q2max (GeV
2) 11.9 14.2 14.2 14.2 14.2 14.2

up 14.02 11.78 9.52 14.02 14.02 11.78
DOF 145 163 204 235 233 154

χ2/DOF 2.76 1.20 1.24 2.05 1.71 1.22

χ2/DOF in [4] 2.80 1.20 1.28 2.13 2.07 1.51

Finally, in the fit procedure developed in [4] the data at
27.4GeV were added to the data set at 19.4GeV. However,
as we have discussed, there is no statistical justification for
this addition due to the energy dependence present in this
region.
As we shall show in the next sections, these corrections

play an important role in the fit results, specially in the
statistical evidence for eikonal zeros and the dependence of
the position of the zeros on the energy.

4.2 Parametrization

In [4, 5] the parametrization for the real and imaginary
parts of the scattering amplitude was expressed in terms of
a sum of exponential in q2 and the experimental ρ value at
each energy as input. Here we use the same basic form but
include also the total cross section as input parameter. Spe-
cifically, the scattering amplitude, F (s, q) = Re F (s, q)+
iIm F (s, q), is parametrized by

F (s, q) = µ(s)
m∑
j=1

αje
−βjq

2
+ i

n∑
j=1

αje
−βjq

2
, (11)
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Fig. 6. Results of the fits to pp differential cross section data.
Curves and data were multiplied by factors of 10±4

where

µ(s) =
ρ(s)σtot(s)

4π
∑m
j=1 αj

, (12)

and ρ(s) and σtot(s) are the experimental values at each
energy. In this way the parametrization now reproduces
both (5) and (6).

4.3 Confidence intervals for uncertainties

Another improvement concerns the confidence level for es-
timating the errors in the fit parameters (variances and co-
variances). In [4, 5] the errors correspond to an increase of
theχ2 by one unity, which is controlled in theCERN-Minuit
code by the up parameter, being set equal to 1. Depending
on the number of free parameters, this fixed value implies
different confidence level intervals, which determine the in-
terval of the uncertainty in each free parameter [27]. With
this procedure, any error propagation is different for fits
with a different number of parameters. Here, on the other
hand, we fixed the confidence interval using the correspond-
ing up value for eachnumber of parameters. Specifically, the
errors in the fit parameters correspond to the projection of
the χ2 hypersurface containing 70% of probability in each
energy analyzed.

4.4 Fit results

Summarizing, we analyze six ensembles of data on pp dif-
ferential cross sections: the set at 19.4GeV and the five sets
at the ISR energies with the data at 27.4GeV added to each

Fig. 7. Results of the fit at the diffraction peak. Curves and
data were multiplied by factors of 10±4

set. The data cover the region above Coulomb–nuclear in-
terference and include the optical points (Table 1). The
errors are statistical only.
Each set was fitted through parametrization (11) and

(12), with the experimental values of σtot(s) and ρ(s) at
each energy (Table 1), by means of the CERN-Minuit code.
The best fits were obtained with 2 exponential in the real
part and 4, 5 or 6 in the imaginary part depending on the
data set analyzed:m= 2 and n= 4, 5 or 6 in (11). We note
that the exponential terms with j = 1 and j = 2 appear in
both the real and imaginary parts.
The numerical results of the fits are displayed in Table 5

together with the statistical information, including the
value of the up parameter and the values of χ2/DOF ob-
tained in the previous analysis [4]. Figures 6 and 7 show the
fit results together with the experimental data in the whole
q2 region and at the diffraction peak, respectively. In Fig. 8
we display the contributions to the differential cross section
from the real and imaginary parts of the amplitude.
From Table 5 we see that the values of the χ2/DOF

here obtained are slightly smaller than those presented
in [4], except at 23.5GeV, for which the value is the same.
This slight improvement in the statistical result may be
due to the inclusion of the σtot experimental data in the
parametrization at each energy. From Fig. 8 we see that in
all the cases the real part of the amplitude presents one
zero at small values of the momentum transfers, a result in
agreement with the theorem by Martin for the real ampli-
tude [28]. The imaginary part develops one zero at the ISR
energies and multiple zeros at 19.4GeV, and that may be
due to the fact that these data are not normalized as in the
analysis by Amaldi and Schubert. This effect at 19.4 did
not appear in the previous analysis [4] due to the unjusti-
fied addition of data at 27.4 GeV.
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Fig. 8. Contributions to the differential cross sections from the
real (dotted) and imaginary (dashed) parts of the amplitude

5 Eikonal in momentum transfer space

The point in the extraction of the eikonal is not only
its determination in the q space, through the steps de-
scribed in Sect. 2, but mainly the estimation of the un-
certainty regions by means of propagation of the errors
in the fit parameters (variances and covariances) and also
the errors from σtot(s) and ρ(s). The problem here is
that, with parametrizations like (11) and (12) for the
scattering amplitude (sum of exponential in q2), the trans-
lation of the eikonal from b space to q space, (3), can-
not be analytically performed and therefore, the stan-
dard error propagation neither. To solve this problem
a semi-analytical method was developed, which is ex-
plained in detail in [4, 5] and will also be applied in this
analysis.
In what follows we shall treat only the imaginary part

of the eikonal since, according to our definition, (1) and
(2), it corresponds to a real opacity function in the optical
analogy. With the usual notation we represent

Im χ(s, b)≡Ω(s, b) . (13)

We shall also use the bracket 〈 〉 to denote the two-
dimensional Fourier transform with azimuthal symmetry,
so that the translations between q and b spaces will be
expressed by

Ω(s, b) = 〈Ω̃(s, q)〉=

∫ ∞
0

qdqJ0(qb)Ω̃(s, q) , (14)

Ω̃(s, q) = 〈Ω(s, b)〉 =

∫ ∞
0

bdbJ0(qb)Ω(s, b) . (15)

5.1 Semi-analytical method

As shown in [4], taking into account the error propagation
from the fit parameters it is possible to approximate the
imaginary part of the eikonal in (8) by

Ω(s, b)≈ ln

[
1

1−Re Γ (s, b)

]
, (16)

and the same is valid in the present analysis. Expanding
this equation we obtain

Ω(s, b) = Re Γ (s, b)+R(s, b) , (17)

where R(s, b) represents the remainder of the series:

R(s, b) = ln

[
1

1−Re Γ (s, b)

]
−Re Γ (s, b) . (18)

Up to this point the errors of the fit parameters from
Im F can be propagated to Re Γ by (7) and to R(s, b); see
(18). The next step concerns the translation of (17) from
b space to q space, (15). Applying the Fourier transform
in (17) we obtain

Ω̃(s, q) = Im F (s, q)+ R̃(s, q) . (19)

As commented on before, the point here is that due to
the structure of the parametrization, the translation from
R(s, b) to R̃(s, q) cannot be performed in an analytical way
and as a consequence nor can the error propagation. The
semi-analytical method introduced in [5] addresses this
question through the following procedure. We first gener-
ate an ensemble of numerical points R(s, b) through (18),
with propagated errors±∆R(s, b), and then fit this ensem-
ble by a sum of gaussians in b, in practice with six terms:

Rfit(s, b) =
6∑
j=1

Aje
−Bjb

2
. (20)

In this way, not only R̃(s, q) can be evaluated through
the Fourier transform of the above formula, but also the er-
rors from the fit parameters,Aj andBj , can be analytically
propagated providing ∆R̃ and, through (19), ∆Ω̃(s, q). As
discussed in [4], this method allows for the study of several
aspects of the eikonal in the momentum transfer space. In
this work we shall focus only on the investigation of eikonal
zeros (change of sign).

5.2 Eikonal zeros

A review of a previous indication of eikonal zeros, with
complete references to outstanding results can be found
in [4]. Here we use the semi-analytical method in order to
investigate the eikonal zeros and the associated uncertain-
ties. As in [4, 5] that can be done through plots of q8 times

Ω̃(s, q)±∆Ω̃(s, q) as a function of the momentum trans-
fer as shown in Fig. 9. We consider as statistical evidence of
a change of signal only the cases in which the uncertainty



R.F. Ávila, M.J. Menon: Eikonal zeros in the momentum transfer space from proton–proton scattering 565

region above the central value is below the zero. With this
criterion, from Fig. 9, we have evidence for a change of sign
at all the ISR energies, but, different from the result ob-
tained in [4], not at

√
s= 19.4GeV.

We recall that in [4] the data at 27.4GeV were added
to those at 19.4GeV and that is not the case here. This
suggests the importance of data at large momentum trans-
fer in the statistical identification of a zero in the eikonal.
This aspect can also be corroborated if we consider fits only
to the original ISR data sets, that is, without adding the
data at 27.4GeV. The results with parametrization (11)
and (12) are displayed in Fig. 10, from which we see that
except for the data at 44.7 and 52.8GeV no evidence of ze-
ros can be inferred and these two sets just correspond to
those with the largest interval in the momentum transfer
with the available data (Fig. 1).
From the plots in Fig. 9 and the NAG routine

(C05ADF), we can determine the position of the zeros
and the uncertainties associated with each central value
by means of the extrema intervals of the propagated errors
(asymmetrical). The numerical results extracted in this
way are shown in Table 6, where q20 indicates the central
value of the zero and +∆q20 and −∆q

2
0 the asymmetrical

uncertainties at the right and the left of the central value,
respectively. These numerical values are plotted in Fig. 11,
where the lines connecting the central values were drawn
only to guide the eye.
Despite the statistical evidence for the change of sign of

the eikonal at the ISR energy region, these results do not
allow one to extract a quantitative correlation between the
position of the zero, q20, and the energy. However, we can
outline the following quantitative features.

Fig. 9. Imaginary part of the eikonal in the momentum trans-
fer space multiplied by q8 and uncertainty regions from error
propagation

Table 6. Position of the eikonal zero (q20) and the asymmetri-
cal uncertainties (+∆q20 and −∆q

2
0) in terms of the energy

√
s (GeV) q20 −∆q20 +∆q20 (GeV

2)

23.5 7.72 1.07 0.88
30.7 8.54 0.99 0.80
44.7 5.83 0.15 0.16
52.8 6.74 0.64 0.60
62.5 6.63 0.37 0.35

1. For the lower energies (
√
s= 23.5 and 30.7GeV2) q20 ∼

8 GeV2 and for the higher energies (44.7, 52.8 and
62.5GeV) q20 ∼ 6 GeV

2, suggesting a decreasing in the
position of the zero as the energy increases.

2. Fits to the data on the zero position, Table 6, with a lin-
ear function, q20 = a+ b ln s, gives q

2
0 = (12.3± 2.9)−

(0.74±0.37) lns, with χ2/DOF= 5.3, if the largest er-
rors are used and q20 = (12.8± 2.6)− (0.81± 0.3) lns,
with χ2/DOF= 6.0, in the case of the smallest errors.
Since the errors in the slopes are about 50% of the cen-
tral value, these results also suggest a decreasing in q20
as the energy increases.

3. If we assume b= 0 in the above parametrizations (null
slope) we obtain, respectively, q20 = 6.60± 0.16GeV

2,
χ2/DOF = 5.0 and q20 = 6.61± 0.15GeV

2, χ2/DOF =
6.0.

4. The average of only the central values gives q̄20 = 7.04±
1.08GeV2.

From these numerical results we can only infer the evi-
dence of a change of sign in the eikonal in the region

Fig. 10. Same as Fig. 9 from fits to the ISR data sets without
adding the data at 27.4 GeV
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Fig. 11. Position of the eikonal zero and uncertainties in terms
of the energy (Table 6)

6–8 GeV2, which can roughly be represented by the value

q̄20 = 7.0±1.0GeV
2 . (21)

We note that the conclusion that the position of the
zero decreases with increasing of energy, inferred in [4], was
based on the position of the zero at

√
s= 19.4GeV, namely

q20 ≈ 9 GeV
2 (see Fig. 15 in this reference). However, with-

out adding the data at 27.4GeV, as we did here, we cannot
infer this result. In what follows we discuss the implication
of this zero in a phenomenological context.

6 Phenomenological implication of the
eikonal zeros

First an important observation. Despite the detailed
model-independent analysis here developed, it should be
stressed that we do not present the empirical result, but
an empirical result. In fact, even with the justified strategy
of adding data at large momentum transfer, the fit pro-
cedure has, in principle, an infinite number of solutions.
In our case, this drawback is mainly associated with lack
of knowledge of the contributions from the real and imag-
inary parts of the amplitude beyond the forward direction,
which represents a serious challenge in any inverse scat-
tering problem. For that reason, in what follows, we shall
base our general discussion in qualitative aspects, treat-
ing also some quantitative features but without going into
details.
Summarizing, our model-independent result for the

imaginary part of the eikonal in the q space indicates
that, at the ISR region, the eikonal is positive up to

Fig. 12. Fit results for the imaginary part of the ampli-
tude, multiplied by q8 and uncertainty regions from error
propagation (analogous to Fig. 9 for the imaginary part of the
eikonal)

q20 ∼ 7 GeV
2, changes sign at this point, has a negative

minimum above the zero position and then goes to zero
through negative values (Fig. 9). As already discussed
by Kawasaki, Maheara and Yonegawa [29] this behav-
ior suggests two distinct dynamical contributions in the
diffractive regime: an interaction with long range (posi-
tive eikonal below the zero) and another with short range
(negative eikonal above the zero). In this section we discuss
some implication of this behavior. We first treat empirical
results related with the eikonal and the scattering am-
plitude (Sect. 6.1) and then the implication on the zero
in terms of eikonal models (Sect. 6.2) and form factors
(Sect. 6.3).

6.1 Eikonal and scattering amplitude

One of the most important labels of elastic hadron scat-
tering as a diffractive process is the diffraction pat-
tern in the differential cross section: the peak, the dip
and the smooth decrease at large momentum transfer.
It is generally accepted that the dip at q2 ∼ 1.5 GeV2

(Figs. 1 and 2) is due to a change of sign (zero) in the
imaginary part of the amplitude and that the dip is
filled up by the real part of the amplitude. That is, at
least, what our fit results indicate (Fig. 8). Therefore, it
may be worthwhile to examine possible connections be-
tween the zeros in the amplitudes and in the eikonal
(imaginary parts). Several interesting aspects of this sub-
ject have already been discussed by Kawasaki, Maehara
and Yonezawa [29]; here we focus only on our empirical
results.
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By expanding the exponential term in (1) we obtain for
the imaginary part of the amplitude

Im F (s, q) = Im 〈χ(s, b)〉+
1

2!
Re 〈χ2(s, b)〉

−
1

3!
Im 〈χ3(s, b)〉−

1

4!
Re 〈χ4(s, b)〉+ . . .

(22)

Therefore, in principle, the zero in Im F (s, q) can be gen-
erated either by a zero in Ω̃(s, q) = Im 〈χ(s, b)〉 or by the
terms with alternating signs in the series [29]. Obviously
the difference between Im F and Ω̃ (the leading term)
comes from the contribution of the reminder of the series.
Quantitative information on this respect can be ob-

tained directly from our fit results and by comparing both
quantities (amplitude and eikonal). To this end we con-
sider, as in the case of the eikonal in the q space, the
product of q8 by Im F (s, q) for all the energies analyzed
as shown in Fig. 12. With this we can determine the pos-
ition of the zero in the amplitude together with the prop-
agated uncertainties. The results are displayed in Fig. 13
and Table 7 (where the value at 19.4 GeV corresponds to
the first zero only).
These results allow one to extract the following empiri-

cal features.

1. Concerning the position of the zero in the amplitude
and in the eikonal, Tables 6 and 7 and Figs. 11 and 13
show that there is no correlation at all between them: in
contrast with the position of the zero in the amplitude,
which systematically decreases as the energy increases
(an effect related to the well known shrinkage of the
diffraction peak), the eikonal zero has an approximately
constant position in the energy region investigated.

2. At 19.4 GeV, from Fig. 9 for the eikonal, we see that it
is not possible to identify a change of sign on statisti-
cal grounds (uncertainties below the zero), nor in terms
of the central value, since it goes asymptotically to zero
through positive values. From Fig. 12, the correspond-
ing imaginary part of the amplitude presents multiple
zeros (three at finite q2 values and one asymptotically,
through negative values).

3. At the ISR energy region, from Fig. 9, we have evidence
for the change of signal (one zero), and the correspond-
ing imaginary parts of the amplitudes, Fig. 12, also
present only one change of signal at fixed q2, going to
zero through negative values.

The last two features suggest that a positive-definite
eikonal in the q space originates in multiple dips in the
corresponding differential cross section (zeros in the imag-
inary part of the amplitude); on the other hand, an eikonal
with one change of signal gives rise to only one dip and
a smooth decrease at large momentum transfers. In what
follows we discuss these effects in the context of some
eikonal models.

6.2 Some representative eikonal models

In order to illustrate the empirical features described
above, we have chosen some representative and popular

Table 7. Position of the zero in the imaginary part of the am-
plitude (first zero in the case of 19.4 GeV)

√
s (GeV) q20 −∆q20 +∆q20 (GeV

2)

19.4 1.528 0.014 0.015
23.5 1.4325 0.0095 0.0097
30.7 1.4147 0.0071 0.0071
44.7 1.377 0.010 0.010
52.8 1.3520 0.0094 0.0097
62.5 1.297 0.021 0.019

eikonal models, characterized by parametrizations with
and without zero in the imaginary part of the eikonal in
the q space. We first review some aspects of each model we
are interested in (Sects. 6.2.1–6.2.3) and then discuss the
connections with the empirical results (Sect. 6.2.4).

6.2.1 Models without eikonal zero

Representatives of this class are the historical Chou–
Yangmodel [30–37] and some recent QCD-inspiredmodels
[38–40]. Due to the importance of the connections be-
tween eikonal and form factors and for further discussion
(Sect. 6.3), we recall some details of the droplet model by
Yang et al. and only briefly quote some input of interest in
QCDmodels.

Chou–Yang model.
Basic concepts. In this model, the internal structure of

Fig. 13. Position of the zero in the imaginary part of the am-
plitude. At 19.4 GeV the value corresponds to the first zero
(Table 7)
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a hadron is assumed to be described by a density of opaque-
ness ρ(x, y, z) and in a collision, relativistic effects imply
a contraction of the extended object, so that in the center-
of-mass frame each hadron “sees” the other as a two-
dimensional matter distribution,

D(x, y) =

∫ +∞
−∞

ρ(x, y, z)dz ,

where x and y lie on the impact parameter plane and z is
the coordinate perpendicular to it. According to the opti-
cal analogy, the resultant opaqueness (the imaginary part
of the eikonal) in the collision of hadrons A and B is as-
sumed to be the overlapping (convolution) of the matter
distributions,

ΩAB(s, b) = CAB

∫
d2b′DA(|b

′|)DB(|b
′−b|)

≡ CABDA⊗DB , (23)

where CAB is impact parameter independent (it depends
on the energy), and DA,B are connected to the hadronic
matter form factors,

GA,B(q) =

∫
eiq·rρA,B(r)dr , (24)

through the Fourier transform,

DA,B(b) = 〈GA,B(q)〉 . (25)

From the convolution theorem, we obtain the formal ex-
pression of the eikonal in the impact parameter space:

ΩAB(s, b) = CAB(s)〈GA(q)GB(q)〉 . (26)

The Wu–Yang conjecture. In 1965, based on heuristic ar-
guments, Wu and Yang speculated that the elastic pp dif-
ferential cross sections might be proportional to the fourth
power of the proton charge form factor [30]; that is, the
form factor measured in electron–proton scattering. The
connection with this power of the form factor is obtained,
in the above model, by considering the first order expan-
sion of the eikonal, (22) and (26), since for the proton case

Im F (s, q)∝G2p . (27)

Several electromagnetic form factors and inverse scat-
tering problems were discussed in the subsequent
years [31–36], including the traditional dipole parametriza-
tion for the Sachas electric form factor [32],

GD(q) =
1

[1+ q2/µ2]2
, µ2 = 0.71GeV2 . (28)

In this case, from (26), the opacity in the impact parameter
space for pp scattering reads

Ω(s, b) = C(s)
(µb)3

8
K3(µb) , (29)

where K3 is a modified Bessel function. With inputs like
this, the absorption factor CAB(s) is the only free param-
eter, determined from the experimental value of the total
cross section at each energy. The main realization of this
model was the prediction of the diffraction pattern in pp
differential cross section and the correct position of the dip,
as experimentally observed later.
However, although efficient in the description of the ex-

perimental data, the strong conjecture by Wu and Yang,
correlating the hadronic matter form factor with the elec-
tric form factor , cannot be proved or disproved in the
phenomenological context. We shall return to this funda-
mental point in Sect. 6.3, when discussing recent results on
the proton electric form factor.

QCD-inspired models.
In this class of model [38–40] the even eikonal is expressed
as a sum of three contributions, from gluon–gluon (gg),
quark–gluon (qg) and quark–quark (qq) interactions,

χ+(s, b) = χgg(s, b)+χqg(s, b)+χqq(s, b) ,

which individually factorize in s and b,

χij(s, b) = iσij(s)w(b, µij) ,

where ij stands for gg, qg and qq. The impact parameter
distribution function for each process comes from a convo-
lution involving dipole form factors, in the same way as in
the Chou–Yang model, see (23) and (28), but at the ele-
mentary level:

wii(b, µii) =

∫
d2b′Di(|b

′|)Di(|b
′−b|) ,

Gii(b, µii) =

〈
1

[1+ q2/µ2ii]
2

〉
,

so that

wii(b, µii) =
[µiib]

3

8
K3(µiib) ,

where, for i �= j,

µij ≡
√
µiiµjj .

Therefore, in the momentum transfer space, the imag-
inary part of the eikonal has the same structure as the
Chou–Yang model, with the dipole parametrization and
the scale factors µii, i= g, q as free fit parameters, depend-
ing also on the elementary process (qq or gg). With several
other ingredients this class of model allows for good de-
scriptions of the forward data and differential cross section
data at small momentum transfers [38–40].
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6.2.2 Hybrid model

For further discussion we also recall a particular model
with different parametrizations for pp scattering at the ISR
region and p̄p scattering at the collider energies, the for-
mer using an eikonal with multiple zeros and the latter
without zero. The model, developed by Glauber and Ve-
lasco [41, 42], is based on Glauber’s multiple diffraction
formalism which, in leading order, introduces the following
expression for the eikonal [43–45]:

χ̃(s, q) =

NA∑
i=1

NB∑
j=1

GAGBfij ,

where GA and GB are the hadronic form factors, NA and
NB the number of constituents in each hadron and fij the
individual elementary scattering amplitudes between the
constituents (parton–parton scattering amplitudes). In the
case that the elementary amplitudes can be considered to
be the same, denoted by f , and that NANB ≡N , we have
for the imaginary part

Ω̃(s, q) =NGAGBIm f . (30)

In the Glauber–Velasco version [41, 42] use is made
of the Felst as well as the Borkowski–Simon–Walther–
Wendling (BSWW) form factors (no zeros), together with
the following parametrization for the imaginary part of
the elementary amplitude in the case of p̄p scattering at
546GeV [41]:

f(q) =
1

[1+ q2/a2]1/2
.

Therefore, the eikonal presents no zero. For pp scattering at
23.5 a phase factor was introduced,

f(q) =
exp
{
i
[
b1q
2+ b2q

4
]}

[1+ q2/a2]1/2

and in this case both the real an imaginary parts of the
eikonal present multiple zeros. For further reference we re-
call that the data cover the region up to 5.5 GeV2 (pp,
23.5 GeV) and 1.6 GeV2 (p̄p, 546GeV); that is, not large
values of the momentum transfer.

6.2.3 Models with eikonal zero

This is a restricted class of eikonal models. We shall con-
sider here the impact parameter picture by Bourrely, Soffer
andWu and a geometrical or multiple diffraction approach.

Bourrely–Soffer–Wu model. The impact parameter picture
by Bourrely–Soffer–Wu (BSW) [46–49] is the most popu-
lar and, to our knowledge, the first model to consider an
eikonal zero in the momentum transfer space. In this model
the eikonal in the impact parameter space is expressed as
a sum of two terms:

χ(s, b) =R(s, b)+H(s, b) ,

where the first term is a Regge background, which takes
into account the differences between pp and p̄p scattering
and is parametrized as

〈R(s, b)〉=
[
c++ c−e

−iπα(q2)
]
sα(q

2) ,

α(q2) = α0−α
′q2 , q2 =−t .

The second term, responsible for the diffractive component
(pomeron exchange), is the same for pp and p̄p and factor-
izes in s and b:

H(s, b) = S(s)T (b) .

The energy-dependent term comes from massive QED and
is parametrized in a crossing symmetric form:

S(s) =
sc

lnc
′
s
+
uc

lnc
′
u
,

where u is the third Mandelstam variable. Finally, the im-
pact parameter dependence, which is our interest, is also
inspired by the geometrical picture through the convolu-
tion

T (b) = kDA⊗DB = k〈G
2(q2)〉 . (31)

Here, however, the form factor is parametrized as a prod-
uct of two simple poles multiplied by a function with a zero
in the momentum transfer space,

G(q2) =
1

[1+ q2/α2]

1

[1+ q2/β2]

√
1− q2/q20
1+ q2/q20

, (32)

where k, α2, β2 and q20 are free fit parameters. The function
on the right, with a zero at q2 = q20 , was introduced to ac-
count for possible differences between the electromagnetic
and hadronic form factors, as well as to correct the dip pos-
ition [46–48]. In the last analysis by Bourrely, Soffer and
Wu the position of the zero was inferred to be at [49]

q20 ∼ 3.45GeV
2 . (33)

A multiple diffraction model. Without a theoretical basis
as in the case of the BSW model, a multiple diffrac-
tion model (Glauber context), introduced in 1988 [50, 51],
makes use of the following parametrizations for the eikonal
in (30):

Ω̃(s, q) = C(s)G2(s, q)Im f(q) , (34)

with

G(s, q) =
1

[1+ q2/α2(s)]

1

[1+ q2/β2]
, (35)

Im f(s, q) =
1− q2/q20
1+ [q2/q20]

2 , (36)

where the N factor has been included in C(s). The mathe-
matical structure is very similar to the geometrical ansatz
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introduced by BSW, except for the dependence of α2 on
the energy and the square in the q2/q20 term in the de-
nominator. The reason for this square is explained and
discussed in [52, 53]. By means of suitable phenomenolog-
ical parametrizations for C(s) and α2(s) and for

q20 = 8.20GeV
2 , (37)

good descriptions of the experimental data on elastic
pp and p̄p scattering, above 10 GeV, have been obtained
(β2pp = 1.80GeV

2 and β2p̄p = 1.55GeV
2); the real part of

the amplitude can be evaluated either through the Mar-
tin formula [50, 54, 55] or by means of derivative dispersion
relations applied at the elementary level [56].
In a geometrical context the α2 dependence means

hadronic form factors depending on the energy, a hypoth-
esis or procedure that was also used in 1990 by Chou and
Yang [37]. A theoretically improved version of this multiple
diffraction model, including dual and pomeron aspects, is
presented in [57, 58].

6.2.4 Discussion

General aspects. As is known from the original papers, all
the above models without zero in the eikonal can only de-
scribe the differential cross section data at small values of
the momentum transfer, typically below q2 ∼ 2 GeV2 (for
example, QCD-inspired models [38–40]). Above this re-
gion, theoretical curves present multiple dips, which are
not present in the experimental data (for example, the
Chou–Yang model [33–37] and the Glauber–Velasco model
at collider energies [41]).
On the other hand, models with one zero in the eikonal

are able to describe quite well the differential cross section
data even at large values of the momentum transfer. Ex-
amples are the BSWmodel [46–49] and the variants of the
multiple diffraction model [54–58].
Therefore, these phenomenological results are in agree-

ment with the conclusions of our empirical analysis, pre-
sented in Sect. 6.1: an eikonal with zero gives rise to only
one dip in the corresponding differential cross section
and a smooth decrease at large values of the momentum
transfers. In this sense, the model-independent features
extracted from our analysis corroborate the ingredients
present in the BSWmodel and the variants of the multiple
diffraction model.

Quantitative aspects. At this point it seems worthwhile to
attempt to go further in the investigation on more quan-
titative connections among model parametrizations with
zero and our empirical results for the imaginary part of
the eikonal. We stress, however, the critical comment at
the beginning of Sect. 6 on the limitation of our model-
independent results.
The idea is to generate a discrete set of points for the

extracted Ω̃(q), with the associated uncertainties from
error propagation, and compare with model parametriza-
tions presenting one zero. As we shall see, suitable quan-
tities for this comparison are, as before, q8Ω̃(q) and
also |Ω̃(q)|.

In what follows we shall consider only the fit results ob-
tained at 52.8GeV, since the original data set covers the
largest region in momentum transfer (up to 9.75 GeV2) and
has one of the largest number of points (adding data at
27.4GeV), and the data reduction presented a reasonable
χ2/DOF (Table 5). The empirical results for pp scattering

Fig. 14. Generated points with uncertainties for the opacity,
from the empirical fit to pp scattering data at 52.8 GeV. The
curves are the result of the data reduction through Ω̃BSW(q),
see (38) and (39), Ω̃mBSW(q), see (38) and (40) and Ω̃empir(q),
see (44). (Table 8)
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Table 8. Results of the data reductions to the generated points in Fig. 14 (pp scattering at 52.8 GeV)
through different parametrizations for the imaginary part of the eikonal (see text)

Ω̃BSW Ω̃mBSW Ω̃empir
(38) and (39) (38) and (40) (44)

C (GeV−2) 11.351±0.023 11.220±0.039 11.155±0.039
α2 (GeV2) 0.704±0.014 0.746±0.023 0.4534±0.0093
β2 (GeV2) 0.704±0.015 0.746±0.023 1.497±0.047
χ2/DOF 207 42 0.50

at 52.8GeV are displayed in Fig. 14 in the form of points
with the propagated errors.
As regards models with eikonal zero, we consider the

inputs of the BSWmodel for the impact parameter depen-
dence, (31) and (32) and the original version of the multiple
diffraction model, (34)–(36). For further discussion of these
two models, we introduce the following notation for the
imaginary part of the eikonal at fixed energy:

Ω̃(q) =
C

[1+ q2/α2]2[1+ q2/β2]2
f(q) , (38)

with either

f(q)→ fBSW ≡
1− q2/q20
1+ q2/q20

, (39)

or

f(q)→ fmBSW ≡
1− q2/q20
1+ [q2/q20]

2 , (40)

where the subscript mBSW stands for modified BSW (re-
ferring to the square in the denominator). This notation,
introduced in [52, 53], is useful, since it allows for two dis-
tinct physical interpretations for the above eikonal, either
in the Chou–Yang or Glauber contexts:

1. a product of two form factors each one in the form intro-
duced by BSW (Chou–Yang context)

G1(q) =
1

[1+ q2/α2]

1

[1+ q2/β2]

√
f(q) , (41)

2. a product of two form factors, each one parametrized as
two simple poles

G2(q) =
1

[1+ q2/α2]

1

[1+ q2/β2]
, (42)

by an elementary scattering amplitude (Glauber con-
text)

fBSW(q) or fmBSW(q) . (43)

The point is that, since q20 represents the eikonal zero, in
the former case it is associated with the hadronic form fac-
tor and in the latter case with the elementary amplitude.
For comparison with our empirical results at 52.8GeV,

we fix q20 in the above formulas to the extracted position
of the zero at this energy, namely 6.74GeV2 (this is also

the median of the values displayed in Table 6) and fit the
eikonals (38)–(40) to the generated points by means of the
CERN-Minuit code. The free parameters in both cases are
C, α2 and β2. The results are displayed in Table 8 (sec-
ond and third columns) and Fig. 14, with the following
notation:

Ω̃BSW(q)→ (38) and (39)

Ω̃mBSW(q)→ (38) and (40) .

We see that, although in both cases the modulus of the
opacity is reasonably reproduced up to q2 ∼ 8 GeV2, de-
viations occur above this region, and, as a consequence,
the χ2/DOF are too large (Table 8). Moreover, the plot of
q8Ω̃(q) indicates that both parametrizations do not reach
the generated points, except near the fixed position of the
zero and near the origin.
However, roughly, the result with Ω̃mBSW is nearer the

empirical points than that with the Ω̃BSW. This effect is
directly related to the square in the q2/q20 term and may
also explain the better reproduction of the differential cross
section data at large momentum transfers obtained with
the multiple diffraction model (compare, for example, the
results for p̄p at 546GeV in [49, 55]). Obviously, the pos-
ition of the zero as obtained in both models, from the phe-
nomenological analysis, (33) and (37), is not in agreement
with the empirical result.
We have already stressed that our model-independent

analysis indicates only one possible empirical result, and
that could explain some of the differences with the para-
metrizations discussed above. However, even taking into
account this limitation, it may be useful, in the phe-
nomenological context, to investigate what kind of analyt-
ical parametrization can reproduce the generated points
in Fig. 14 and that is our next task here.

Empirical parametrization for the eikonal. We have tested
several analytical parametrizations in order to reproduce
the extracted points in Fig. 14. The best result was ob-
tained with an additional square in the q2/q20 term present
in the denominator of the fmBSW function, leading to the
following novel empirical (empir) parametrization for the
opacity:

Ω̃empir(q) =
C

[1+ q2/α2]2[1+ q2/β2]2
1− q2/q20

1+ [q2/q20]
4 .

(44)
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The results of the fit to the extracted points are dis-
played in Fig. 14 and Table 8 (third column), showing that
the reproduction of the data is quite good. Although this
empirical parametrization may play an important role in
the phenomenological context, presently, we cannot pro-
vide a physical interpretation to it. We note, however, that
a typical difference among all the above parametrizations
concerns the asymptotic behavior, since for q2 →∞ we
have

Ω̃BSW(q) ∼−
1

(q2)4
, Ω̃mBSW(q)∼−

1

(q2)5
,

Ω̃empir(q)∼−
1

(q2)7
.

Some other aspects are discussed in the following section.

6.3 Electromagnetic and hadronic form factors

The Wu–Yang conjecture, associating the unknown
hadronic matter form factor with an electromagnetic form
factor [30], has played a fundamental and historical role
in the phenomenological context. Also important, as we
have recalled, has been the identification of the hadronic
form factor with the dipole parametrization, see (28), for
the Sachas electric form factor [32]. These ideas date back
to the end of the sixties and, on the other hand, presently,
abundant data on the electromagnetic nucleon form fac-
tors are available, at both time-like (q2 < 0) and space-like
(q2 > 0) regions, allowing for new insights in that old con-
jecture. Most important to our phenomenological purposes
is the fact that recent experiments have indicated an unex-
pected decrease in the proton electric form factor, as the
momentum transfer increases, not in disagreement with
the possibility to reach zero just around q20 ≈ 7.5 GeV

2.
Therefore, to finish this work, it may be worthwhile to

explore some possible connections between these results
from the electromagnetic sector and those concerning the
eikonal zero at q20 ≈ 7 GeV

2, presented in the preceding sec-
tions (some arguments on this respect have already been
discussed in [4, 59]). To this end we first summarize the new
information on the proton electric form factor and then dis-
cuss possible empirical connections with our results. We
shall not go into details but only quote some results of in-
terest to our discussion. For recent detailed reviews on the
subject in both experimental and theoretical contexts, see,
for example [60, 61].

6.3.1 Rosenbluth and polarization transfer results

The traditional technique to experimentally investigate
the nucleon electromagnetic form factors has been the sep-
aration method by Rosenbluth [62], which is based on
the measurement of the differential cross section from un-
polarized electron–nucleon scattering. For the electron–
proton case, the results have indicated a scaling law for the
ratio [63–67]

Rp = µp
GE(q

2)

GM(q2)
≈ 1 ,

where µp is the proton magnetic moment and GE and GM
the Sachas electric and magnetic form factors.
In 2000–2005, experiments with a polarized electron

beam, in polarization transfer scattering,

ep→ ep ,

have allowed simultaneous measurements to be made of
the transverse and longitudinal components of the recoil
proton’s polarization. By means of this polarization trans-
fer technique the ratio GE/GM can be directly determined
with great reduction of the systematic uncertainties at large
momentum transfers, q2 : 4–9 GeV2. The surprising result
was the indication that this ratio decreases almost linearly
with increasing momentum transfers [68–72], leading even
to a parametrization, at large q2, of the form [70]

Rp = 1−0.135(q
2−0.24) ,

which, by extrapolation, indicates a zero (change of signal)
inGE at

q20 ≈ 7.6GeV
2 .

From a theoretical point of view, radiative corrections
associated with a two-photon exchange process have been
extensively investigated as a possible source of the ob-
served differences. As commented on before, we shall not
treat these aspects here; see [60, 61] for all the details and
references.

6.3.2 The proton electric form factor

Recently, a global analysis of the world’s data on elas-
tic electron–proton scattering, taking into account the ef-
fects of two-photon exchange has been performed. The
analysis combines both the corrected Rosenbluth cross
section and polarization transfer data, providing the cor-
rected values of GE and GM over the full q

2 range with
the available data [73]. The results for the ratio GE/GD
between the proton electric form factor and the dipole
parametrization (with µ2 = 0.71GeV2), covering the re-
gion q2 ≈ 10−2–6 GeV2, are displayed in Figs. 15 and 16.
These data clearly show the deviation of GE from GD

for q2 above ≈ 1 GeV2 and, from a strictly empirical point
of view, that GE might reach zero around q

2
0 ≈ 7–8 GeV

2.
Obviously, this zero might also be reached in an asymp-
totic process, as predicted, for example, in the unitary and
analytic model [74].
Anyway, in the context of the Wu–Yang conjecture, it

may be worthwhile to compare the parametrizations for
the hadronic form factors from eikonal models with one
zero (Sect. 6.2.4) and the above data. To this end we re-
turn to the following parametrizations for the hadronic
proton form factor (Chou–Yang context), with the follow-
ing notation:

GBSW =
1

[1+ q2/α2]

1

[1+ q2/β2]

√
1− q2/q20
1+ q2/q20

, (45)
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Fig. 15. Experimental data on the ratio of the proton electric
form factor to the dipole parametrization, GE/GD from [73]
and fit results through BSW, mBSW and the empirical
parametrizations, (45), (46) and (47), respectively, and (48),
with q20 = 7GeV

2 (Table 9)

GmBSW =
1

[1+ q2/α2]

1

[1+ q2/β2]

√
1− q2/q20
1+ [q2/q20]

2 ,

(46)

Gempir =
1

[1+ q2/α2]

1

[1+ q2/β2]

√
1− q2/q20
1+ [q2/q20]

4 .

(47)

The point is to construct the ratio of each of the above
formulas with the dipole parametrization, (28),

Gi(q)

GD(q)
, i=BSW, mBSW, empir (48)

Table 9. Results of the fit to the extracted ratio between the proton electric form factor and dipole
parametrization. All the parameters in GeV2

q20 BSW mBSW empir
(45) and (48) (46) and (48) (47) and (48)

7 GeV2 α2 1.550±0.073 1.310±0.064 1.156±0.055
β2 0.437±0.010 0.446±0.012 0.474±0.014

χ2/DOF 1.36 1.34 1.79

free α2 1.8068±0.097 1.508±0.084 1.328±0.070
β2 0.4192±0.0090 0.423±0.011 0.446±0.012
q20 6.06±0.11 6.12±0.13 6.04±0.10

χ2/DOF 1.11 1.11 1.41

Fig. 16. Same as Fig. 15 with q20 as a free fit parameter

and perform the fits to the data in Fig. 15 through the code
CERN-Minuit. In addition we consider two variants for the
data reduction.

#1. q20 fixed to our average result in the ISR region, (21),

q20 = 7.0 GeV
2 and α2 and β2 as free fit parameters.

#2. q20 as a free fit parameter together with α
2 and β2.

The results are shown in Figs. 15 and 16, respectively,
and the numerical results are displayed in Table 9.
We see that, although all the parametrizations provide

good visual descriptions of the data, the best statistical re-
sults have been obtained withGBSW, see (45), andGmBSW,
see (46), and q20 as a free fit parameter: χ

2/DOF = 1.11
in both cases. Moreover, both fits indicate q20 ≈ 6.1 GeV

2,
a value barely compatible with our average estimation,
(21). The statistical results with Gempir, (47), are not so
good since the χ2/DOF is higher.
These results suggest that parametrizations (45)–(47)

have correlations with the recent global analysis on the
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proton electric form factor [73], a fact that may bring about
new theoretical insights in the phenomenological context.
It seems to us that a striking aspect of the above empir-
ical results is the fact that they corroborate the old Wu–
Yang conjecture and just after a complete change in the
experimental knowledge on the electromagnetic form fac-
tors along the years (Rosenbluth scaling versus polariza-
tion transfer results).

7 Summary and final remarks

We have developed an empirical analysis of the differen-
tial cross section data on elastic pp scattering in the region
19.4≤

√
s ≤ 62.5GeV. The analysis introduces two main

improvements if compared with a previous one [4, 5], the
first associated with the structure of the parametrization
and the second with the selected data ensemble. We have
also presented a critical discussion of the experimental
data available, checking, in some detail, that data at large
momentum transfers (q2 > 3.5 GeV2) do not depend on
the energy in the particular region 23.5≤

√
s ≤ 62.5GeV.

Based on this information, we have included the data ob-
tained at 27.4GeV only in the five sets in the above energy
region and not at 19.4 GeV, as done in [4]. With these im-
provements we have obtained better statistical results than
in the previous analysis [4, 5].
As commented on at the beginning of Sect. 6, these fits

represent only one solution. In fact, the data reduction of
the differential cross sections with ∼ 150 DOF and ∼ 10
free parameters is a very complex process and the main
point is the lack of information on the contributions from
the real and imaginary parts of the amplitude beyond the
forward direction, leading to an infinite number of possible
solutions. To our knowledge, the only model-independent
information on the real part at q2 > 0 concerns a theo-
rem by Martin, which indicates a change of signal (zero)
at small values of the momentum transfer [28]. The exact
position, however, cannot be inferred. In our approach, by
including in the parametrization the experimental results
on σtot and ρ at each energy, we correctly reproduce the
forward behavior in the region investigated. The zero in the
real part is generated by using two equal exponential con-
tributions (in q2) in both real and imaginary parts (m= 2
and n= 4, 5 and 6 in (11)). However, the zero can also be
generated without this constraint [75].
Therefore, a general and detailed analysis of the phys-

ically acceptable data reductions, constrained by model-
independent formal results, is necessary andwe are presently
investigating the subject [75]. Anyway, despite the above
limitations in the present analysis, it allows us to infer
several novel qualitative and some quantitative results, as
summarized in what follows.
With the data reduction and by means of the semi-

analytical method, the imaginary part of the eikonal (real
opacity function), in the momentum transfer space, has
been extracted, together with uncertainty regions from
error propagation. That was achieved within the approx-
imation (16), justified by the fit results. Although the

method provides model-independent results for the eikonal
in both q and b spaces, we focused here only the question
of the eikonal zero in q space. Different from the previous
analysis [4], we obtained statistical evidence for a change of
sign in the imaginary part of the eikonal only in the region
23.5≤

√
s≤ 62.5GeV and not at 19.4GeV. Moreover, the

position of the zero in this energy region is approximately
constant with an average value of q20 = 7±1 GeV

2, compat-
ible with the result obtained in [5], where only the ISR data
were considered.
The implication of the eikonal zero in the phenomeno-

logical context has also been discussed in some detail. We
have shown that models with two dynamical contributions
for the imaginary part of the eikonal (positive at small
and negative at large momentum transfers) allows for good
descriptions of the differential cross section data in the
full q2 region with the available data. In this context the
BSW model play a central role due to both its theoret-
ical basis and the reproduction of the experimental data.
We have also discussed some analytical parametrizations
for the extracted eikonal, either from phenomenological
models (ΩBSW and ΩmBSW) or by introducting a novel
form (Ωempir).
Connections between the extracted eikonal and a recent

global analysis on the proton electric form factor have also
been discussed. In particular we have shown that eikonal
models presenting good descriptions of the elastic hadron
scattering make use of effective form factors also compat-
ible with the proton electric form factor, and in this case,
the fits have indicated a zero at q20 ≈ 6.1 GeV

2. This com-
patibility between hadronic and electric form factors seems
a remarkable fact if we consider all the theoretical and ex-
perimental developments that took place after the original
conjecture by Wu and Yang.
We understand that all these empirical results can pro-

vide novel and important insights in the phenomenological
context, since, through the Fourier transform, suitable in-
puts for the “unknown” impact parameter contribution
can be obtained. For example, in the case of QCD-inspired
models, the factorization in s and b at the elementary level
(Sect. 6.2.1) allows, in principle, any choice for the impact
parameter contribution without losing the semi-hard QCD
connections (σgg(s), for example). The use of parametriza-
tions (45–47) in place of the dipole parametrization at the
elementary level (qq, qg, gg contributions) may be much
more efficient in the description of the differential cross sec-
tion data at large values of the momentum transfer. That
is, at least, what our phenomenological analysis suggests.
We are presently investigating this subject.
Finally, we would like to call attention to a central

aspect related to the importance of the differential cross
section information at largemomentum transfers in any re-
liable model-independent analysis. Comparison of Figs. 9
and 10 shows clearly that the lack of data at large mo-
mentum transfers turns out to make very difficult or even
impossible any detailed knowledge of the elastic scattering
processes. Despite the technical difficulties in performing
experiments at a large momentum region, we think this
should be an aspect to be taken into account in the forth-
coming experiments. We end this work stressing once more
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the assertion by Kawasaki, Maehara and Yonezawa [29]:
“Such experiments will give much more valuable informa-
tion for the diffraction interaction rather than to go to
higher energies”.
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